授業方針・テーマ |
公開鍵暗号方式と様々な暗号プロトコルについて学ぶ。 |
習得できる知識・能力や授業の 目的・到達目標 |
・アーベル群や離散対数、楕円曲線を用いた公開鍵暗号方式、認証プロトコル、コミットメン(専門分野の知識・理解、論理的思考能力)ト、ゼロ知識証明、秘密共有、電子投票、ディジタルキャッシュ、秘密計算についての知識やプロトコル設計能力を習得する。(専門分野の知識・理解) ・公開鍵暗号方式の理解と安全性の証明ができる。(専門分野の知識・理解、論理的思考能力) ・暗号プロトコルの設計と安全性の証明ができる。(専門分野の知識・理解、暗号プロトコル設計能力・解析能力、論理的思考能力) |
授業計画・内容 授業方法 |
1. The review of elementary cryptography 2. RSA (Moduler arithmetic) 3. RSA (Plain RSA and Chinese remainder theorem) 4. Discrete logarithm, ElGamal encryption 5. Advanced public-key encryption (Homomorphic encryption and Quadratic residues) 6. Advanced public-key encryption (Goldwasser-Micali encryption and Robin encryption) 7. Elliptic curves cryptography 8. Entity authentication protocols and commitment schemes 9. Zero-knowledge interactive proof systems (Interactive proof systems, Fiat-Shamir identification scheme, Fiat-Shamir signature scheme) 10. Zero-knowledge interactive proof systems (Zero-knowledge, Shnorr's identification scheme) 11. Secret sharing and electronic elections 12. Digital cash (Blind signature) 13. Digital cash (Digital electronic systems) 14. Secure computing 15. Homomorphic encryption |
授業外学習 |
複数回の演習問題を課す。宿題を出した場合、次回の従業までに解答を用意しておくこと。 |
テキスト・参考書等 |
参考書: Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography 3rd Ed,", Chapman and Hall/CRC, 2020. H. Delfs and H. Knebl, "Introduction to Cryptography - Principles and Applications," 3rd, 2016. Jonathan Katz and Yehuda Lindell, "Introduction to Modern Cryptography, 2nd Ed.," Champion & Hall/CRC, 2015. |
成績評価方法 |
中間試験60%、期末レポート40%、平常点(授業態度や積極性の状況等)により加点・減点する。 試験については記述式の問題を課し、専門知識を理解した上で論理的な説明ができるか確認する。(公開鍵暗号技術の基本的な知識・理解、論理的思考) 期末レポートについては記述式の問題を課し、暗号プロトコルの設計と安全性の証明、論理的思考) |
質問受付方法 (オフィスアワー等) |
オフィスアワーについては、原則として毎週火曜日13時30分〜14時30分、毎週水曜日12時10分〜12時40分とする。これ以外の時間帯に担当教員に会いたい場合は、事前にメールでアポイントメントを取ること。また質問は Kibaco 又はメールにて受け付ける。 |
特記事項 (他の授業科目との関連性) |
関連科目:暗号理論、情報セキュリティ |
備考 |
|